Theorem nfpr | index | src |

theorem nfpr {x: nat} (a b: nat x): $ FN/ x a $ > $ FN/ x b $ > $ FN/ x a, b $;
StepHypRefExpression
1 anl
y = a /\ z = b -> y = a
2 anr
y = a /\ z = b -> z = b
3 1, 2 preqd
y = a /\ z = b -> y, z = a, b
4 hyp h1
FN/ x a
5 hyp h2
FN/ x b
6 3, 4, 5 nfnlem2
FN/ x a, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)