theorem nfnlem2 {x y z: nat} (c: nat y z) (a b d: nat x):
$ y = a /\ z = b -> c = d $ >
$ FN/ x a $ >
$ FN/ x b $ >
$ FN/ x d $;
Step | Hyp | Ref | Expression |
1 |
|
eqcom |
N[a / y] N[b / z] c = d -> d = N[a / y] N[b / z] c |
2 |
|
hyp e |
y = a /\ z = b -> c = d |
3 |
2 |
sbned |
y = a -> N[b / z] c = d |
4 |
3 |
sbne |
N[a / y] N[b / z] c = d |
5 |
1, 4 |
ax_mp |
d = N[a / y] N[b / z] c |
6 |
|
hyp h1 |
FN/ x a |
7 |
|
hyp h2 |
FN/ x b |
8 |
|
nfnv |
FN/ x c |
9 |
7, 8 |
nfsbnh |
FN/ x N[b / z] c |
10 |
6, 9 |
nfsbnh |
FN/ x N[a / y] N[b / z] c |
11 |
5, 10 |
nfnx |
FN/ x d |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)