theorem nfnlem2 {x y z: nat} (c: nat y z) (a b d: nat x):
  $ y = a /\ z = b -> c = d $ >
  $ FN/ x a $ >
  $ FN/ x b $ >
  $ FN/ x d $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqcom | N[a / y] N[b / z] c = d -> d = N[a / y] N[b / z] c | 
        
          | 2 |  | hyp e | y = a /\ z = b -> c = d | 
        
          | 3 | 2 | sbned | y = a -> N[b / z] c = d | 
        
          | 4 | 3 | sbne | N[a / y] N[b / z] c = d | 
        
          | 5 | 1, 4 | ax_mp | d = N[a / y] N[b / z] c | 
        
          | 6 |  | hyp h1 | FN/ x a | 
        
          | 7 |  | hyp h2 | FN/ x b | 
        
          | 8 |  | nfnv | FN/ x c | 
        
          | 9 | 7, 8 | nfsbnh | FN/ x N[b / z] c | 
        
          | 10 | 6, 9 | nfsbnh | FN/ x N[a / y] N[b / z] c | 
        
          | 11 | 5, 10 | nfnx | FN/ x d | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0)