Theorem nfnlem2 | index | src |

theorem nfnlem2 {x y z: nat} (c: nat y z) (a b d: nat x):
  $ y = a /\ z = b -> c = d $ >
  $ FN/ x a $ >
  $ FN/ x b $ >
  $ FN/ x d $;
StepHypRefExpression
1 eqcom
N[a / y] N[b / z] c = d -> d = N[a / y] N[b / z] c
2 hyp e
y = a /\ z = b -> c = d
3 2 sbned
y = a -> N[b / z] c = d
4 3 sbne
N[a / y] N[b / z] c = d
5 1, 4 ax_mp
d = N[a / y] N[b / z] c
6 hyp h1
FN/ x a
7 hyp h2
FN/ x b
8 nfnv
FN/ x c
9 7, 8 nfsbnh
FN/ x N[b / z] c
10 6, 9 nfsbnh
FN/ x N[a / y] N[b / z] c
11 5, 10 nfnx
FN/ x d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)