theorem nfsbnh {x y: nat} (a b: nat x y):
$ FN/ x a $ >
$ FN/ x b $ >
$ FN/ x N[a / y] b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | FN/ x a |
|
| 2 | hyp h2 | FN/ x b |
|
| 3 | 2 | nfeq2 | F/ x z = b |
| 4 | 1, 3 | nfsbh | F/ x [a / y] z = b |
| 5 | 4 | nfab | FS/ x {z | [a / y] z = b} |
| 6 | 5 | nfthe | FN/ x the {z | [a / y] z = b} |
| 7 | 6 | conv sbn | FN/ x N[a / y] b |