Theorem nfsbnh | index | src |

theorem nfsbnh {x y: nat} (a b: nat x y):
  $ FN/ x a $ >
  $ FN/ x b $ >
  $ FN/ x N[a / y] b $;
StepHypRefExpression
1 hyp h1
FN/ x a
2 hyp h2
FN/ x b
3 2 nfeq2
F/ x z = b
4 1, 3 nfsbh
F/ x [a / y] z = b
5 4 nfab
FS/ x {z | [a / y] z = b}
6 5 nfthe
FN/ x the {z | [a / y] z = b}
7 6 conv sbn
FN/ x N[a / y] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)