Theorem nfsbn | index | src |

theorem nfsbn {x y: nat} (a: nat) (b: nat x y):
  $ FN/ x b $ >
  $ FN/ x N[a / y] b $;
StepHypRefExpression
1 nfnv
FN/ x a
2 hyp h
FN/ x b
3 1, 2 nfsbnh
FN/ x N[a / y] b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)