theorem sbneq2d {x: nat} (G: wff) (a b c: nat x):
$ G -> b = c $ >
$ G -> N[a / x] b = N[a / x] c $;
Step | Hyp | Ref | Expression |
1 |
|
anr |
G /\ y = z -> y = z |
2 |
|
hyp h |
G -> b = c |
3 |
2 |
anwl |
G /\ y = z -> b = c |
4 |
1, 3 |
eqeqd |
G /\ y = z -> (y = b <-> z = c) |
5 |
4 |
sbeq2d |
G /\ y = z -> ([a / x] y = b <-> [a / x] z = c) |
6 |
5 |
cbvabd |
G -> {y | [a / x] y = b} == {z | [a / x] z = c} |
7 |
6 |
theeqd |
G -> the {y | [a / x] y = b} = the {z | [a / x] z = c} |
8 |
7 |
conv sbn |
G -> N[a / x] b = N[a / x] c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)