theorem sbneht {x: nat} (a: nat) (b c: nat x):
$ FN/ x c $ >
$ A. x (x = a -> b = c) -> N[a / x] b = c $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
FN/ x c |
2 |
1 |
nfeq2 |
F/ x y = c |
3 |
2 |
sbeht |
A. x (x = a -> (y = b <-> y = c)) -> ([a / x] y = b <-> y = c) |
4 |
|
imim2 |
(b = c -> (y = b <-> y = c)) -> (x = a -> b = c) -> x = a -> (y = b <-> y = c) |
5 |
|
eqeq2 |
b = c -> (y = b <-> y = c) |
6 |
4, 5 |
ax_mp |
(x = a -> b = c) -> x = a -> (y = b <-> y = c) |
7 |
6 |
alimi |
A. x (x = a -> b = c) -> A. x (x = a -> (y = b <-> y = c)) |
8 |
3, 7 |
syl |
A. x (x = a -> b = c) -> ([a / x] y = b <-> y = c) |
9 |
8 |
eqtheabd |
A. x (x = a -> b = c) -> the {y | [a / x] y = b} = c |
10 |
9 |
conv sbn |
A. x (x = a -> b = c) -> N[a / x] b = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid)