Theorem sbneht | index | src |

theorem sbneht {x: nat} (a: nat) (b c: nat x):
  $ FN/ x c $ >
  $ A. x (x = a -> b = c) -> N[a / x] b = c $;
StepHypRefExpression
1 hyp h
FN/ x c
2 1 nfeq2
F/ x y = c
3 2 sbeht
A. x (x = a -> (y = b <-> y = c)) -> ([a / x] y = b <-> y = c)
4 imim2
(b = c -> (y = b <-> y = c)) -> (x = a -> b = c) -> x = a -> (y = b <-> y = c)
5 eqeq2
b = c -> (y = b <-> y = c)
6 4, 5 ax_mp
(x = a -> b = c) -> x = a -> (y = b <-> y = c)
7 6 alimi
A. x (x = a -> b = c) -> A. x (x = a -> (y = b <-> y = c))
8 3, 7 syl
A. x (x = a -> b = c) -> ([a / x] y = b <-> y = c)
9 8 eqtheabd
A. x (x = a -> b = c) -> the {y | [a / x] y = b} = c
10 9 conv sbn
A. x (x = a -> b = c) -> N[a / x] b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)