Theorem sbneh | index | src |

theorem sbneh {x: nat} (a: nat) (b c: nat x):
  $ FN/ x c $ >
  $ x = a -> b = c $ >
  $ N[a / x] b = c $;
StepHypRefExpression
1 hyp h
FN/ x c
2 1 sbneht
A. x (x = a -> b = c) -> N[a / x] b = c
3 hyp e
x = a -> b = c
4 3 ax_gen
A. x (x = a -> b = c)
5 2, 4 ax_mp
N[a / x] b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)