Theorem nfnlem | index | src |

theorem nfnlem {x y: nat} (b: nat y) (a c: nat x):
  $ y = a -> b = c $ >
  $ FN/ x a $ >
  $ FN/ x c $;
StepHypRefExpression
1 eqcom
N[a / y] b = c -> c = N[a / y] b
2 hyp e
y = a -> b = c
3 2 sbne
N[a / y] b = c
4 1, 3 ax_mp
c = N[a / y] b
5 hyp h
FN/ x a
6 nfnv
FN/ x b
7 5, 6 nfsbnh
FN/ x N[a / y] b
8 4, 7 nfnx
FN/ x c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)