theorem nfnlem {x y: nat} (b: nat y) (a c: nat x):
$ y = a -> b = c $ >
$ FN/ x a $ >
$ FN/ x c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | N[a / y] b = c -> c = N[a / y] b |
|
| 2 | hyp e | y = a -> b = c |
|
| 3 | 2 | sbne | N[a / y] b = c |
| 4 | 1, 3 | ax_mp | c = N[a / y] b |
| 5 | hyp h | FN/ x a |
|
| 6 | nfnv | FN/ x b |
|
| 7 | 5, 6 | nfsbnh | FN/ x N[a / y] b |
| 8 | 4, 7 | nfnx | FN/ x c |