Theorem sbnid | index | src |

theorem sbnid {x: nat} (a: nat x): $ N[x / x] a = a $;
StepHypRefExpression
1 sbid
[x / x] y = a <-> y = a
2 1 a1i
T. -> ([x / x] y = a <-> y = a)
3 2 eqtheabd
T. -> the {y | [x / x] y = a} = a
4 3 conv sbn
T. -> N[x / x] a = a
5 4 trud
N[x / x] a = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)