theorem sbnid {x: nat} (a: nat x): $ N[x / x] a = a $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid | [x / x] y = a <-> y = a |
|
| 2 | 1 | a1i | T. -> ([x / x] y = a <-> y = a) |
| 3 | 2 | eqtheabd | T. -> the {y | [x / x] y = a} = a |
| 4 | 3 | conv sbn | T. -> N[x / x] a = a |
| 5 | 4 | trud | N[x / x] a = a |