Theorem sbneq1d | index | src |

theorem sbneq1d {x: nat} (G: wff x) (a b c: nat x):
  $ G -> a = b $ >
  $ G -> N[a / x] c = N[b / x] c $;
StepHypRefExpression
1 sbneq1
a = b -> N[a / x] c = N[b / x] c
2 hyp h
G -> a = b
3 1, 2 syl
G -> N[a / x] c = N[b / x] c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)