Theorem sbneq1 | index | src |

theorem sbneq1 {x: nat} (a b c: nat x): $ a = b -> N[a / x] c = N[b / x] c $;
StepHypRefExpression
1 sbeq1
a = b -> ([a / x] y = c <-> [b / x] y = c)
2 1 abeqd
a = b -> {y | [a / x] y = c} == {y | [b / x] y = c}
3 2 theeqd
a = b -> the {y | [a / x] y = c} = the {y | [b / x] y = c}
4 3 conv sbn
a = b -> N[a / x] c = N[b / x] c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)