theorem nfres {x: nat} (A B: set x):
$ FS/ x A $ >
$ FS/ x B $ >
$ FS/ x A |` B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | FS/ x A |
|
| 2 | hyp h2 | FS/ x B |
|
| 3 | nfsv | FS/ x _V |
|
| 4 | 2, 3 | nfxp | FS/ x Xp B _V |
| 5 | 1, 4 | nfin | FS/ x A i^i Xp B _V |
| 6 | 5 | conv res | FS/ x A |` B |