Theorem nfres | index | src |

theorem nfres {x: nat} (A B: set x):
  $ FS/ x A $ >
  $ FS/ x B $ >
  $ FS/ x A |` B $;
StepHypRefExpression
1 hyp h1
FS/ x A
2 hyp h2
FS/ x B
3 nfsv
FS/ x _V
4 2, 3 nfxp
FS/ x Xp B _V
5 1, 4 nfin
FS/ x A i^i Xp B _V
6 5 conv res
FS/ x A |` B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)