Theorem nfxp | index | src |

theorem nfxp {x: nat} (A B: set x):
  $ FS/ x A $ >
  $ FS/ x B $ >
  $ FS/ x Xp A B $;
StepHypRefExpression
1 hyp h1
FS/ x A
2 hyp h2
FS/ x B
3 1, 2 nfxab
FS/ x X\ y e. A, B
4 3 conv Xp
FS/ x Xp A B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)