Theorem nfxab | index | src |

theorem nfxab {x y: nat} (A B: set x y):
  $ FS/ y A $ >
  $ FS/ y B $ >
  $ FS/ y X\ x e. A, B $;
StepHypRefExpression
1 hyp h1
FS/ y A
2 1 nfel2
F/ y fst a1 e. A
3 hyp h2
FS/ y B
4 3 nfsbs
FS/ y S[fst a1 / x] B
5 4 nfel2
F/ y snd a1 e. S[fst a1 / x] B
6 2, 5 nfan
F/ y fst a1 e. A /\ snd a1 e. S[fst a1 / x] B
7 6 nfab
FS/ y {a1 | fst a1 e. A /\ snd a1 e. S[fst a1 / x] B}
8 7 conv xab
FS/ y X\ x e. A, B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)