theorem xabeq2d (_G: wff) {x: nat} (A _B1 _B2: set x):
$ _G -> _B1 == _B2 $ >
$ _G -> X\ x e. A, _B1 == X\ x e. A, _B2 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsidd | _G -> A == A |
|
| 2 | hyp _h | _G -> _B1 == _B2 |
|
| 3 | 1, 2 | xabeqd | _G -> X\ x e. A, _B1 == X\ x e. A, _B2 |