theorem xabeq2d (_G: wff) {x: nat} (A _B1 _B2: set x): $ _G -> _B1 == _B2 $ > $ _G -> X\ x e. A, _B1 == X\ x e. A, _B2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> A == A |
|
2 | hyp _h | _G -> _B1 == _B2 |
|
3 | 1, 2 | xabeqd | _G -> X\ x e. A, _B1 == X\ x e. A, _B2 |