Theorem nfsbs | index | src |

theorem nfsbs {x y: nat} (a: nat) (A: set x y):
  $ FS/ x A $ >
  $ FS/ x S[a / y] A $;
StepHypRefExpression
1 nfnv
FN/ x a
2 hyp h
FS/ x A
3 1, 2 nfsbsh
FS/ x S[a / y] A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)