theorem nfsbsh {x y: nat} (a: nat x) (A: set x y):
$ FN/ x a $ >
$ FS/ x A $ >
$ FS/ x S[a / y] A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsbs | z e. S[a / y] A <-> [a / y] z e. A |
|
| 2 | hyp h1 | FN/ x a |
|
| 3 | hyp h2 | FS/ x A |
|
| 4 | 3 | nfel2 | F/ x z e. A |
| 5 | 2, 4 | nfsbh | F/ x [a / y] z e. A |
| 6 | 1, 5 | nfx | F/ x z e. S[a / y] A |
| 7 | 6 | nfsri | FS/ x S[a / y] A |