theorem nfsbsh {x y: nat} (a: nat x) (A: set x y): $ FN/ x a $ > $ FS/ x A $ > $ FS/ x S[a / y] A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsbs | z e. S[a / y] A <-> [a / y] z e. A |
|
2 | hyp h1 | FN/ x a |
|
3 | hyp h2 | FS/ x A |
|
4 | 3 | nfel2 | F/ x z e. A |
5 | 2, 4 | nfsbh | F/ x [a / y] z e. A |
6 | 1, 5 | nfx | F/ x z e. S[a / y] A |
7 | 6 | nfsri | FS/ x S[a / y] A |