Theorem nfsbsh | index | src |

theorem nfsbsh {x y: nat} (a: nat x) (A: set x y):
  $ FN/ x a $ >
  $ FS/ x A $ >
  $ FS/ x S[a / y] A $;
StepHypRefExpression
1 elsbs
z e. S[a / y] A <-> [a / y] z e. A
2 hyp h1
FN/ x a
3 hyp h2
FS/ x A
4 3 nfel2
F/ x z e. A
5 2, 4 nfsbh
F/ x [a / y] z e. A
6 1, 5 nfx
F/ x z e. S[a / y] A
7 6 nfsri
FS/ x S[a / y] A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)