Theorem elsbs | index | src |

theorem elsbs {x: nat} (a: nat x) (b: nat) (A: set x):
  $ b e. S[a / x] A <-> [a / x] b e. A $;
StepHypRefExpression
1 bitr
(b e. S[a / x] A <-> [b / y] [a / x] y e. A) -> ([b / y] [a / x] y e. A <-> [a / x] b e. A) -> (b e. S[a / x] A <-> [a / x] b e. A)
2 elab
b e. {y | [a / x] y e. A} <-> [b / y] [a / x] y e. A
3 2 conv sbs
b e. S[a / x] A <-> [b / y] [a / x] y e. A
4 1, 3 ax_mp
([b / y] [a / x] y e. A <-> [a / x] b e. A) -> (b e. S[a / x] A <-> [a / x] b e. A)
5 eleq1
y = b -> (y e. A <-> b e. A)
6 5 sbeq2d
y = b -> ([a / x] y e. A <-> [a / x] b e. A)
7 6 sbe
[b / y] [a / x] y e. A <-> [a / x] b e. A
8 4, 7 ax_mp
b e. S[a / x] A <-> [a / x] b e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)