theorem sbseq1d {x: nat} (G: wff) (a b: nat) (A: set x):
$ G -> a = b $ >
$ G -> S[a / x] A == S[b / x] A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | G -> a = b |
|
| 2 | 1 | sbeq1d | G -> ([a / x] y e. A <-> [b / x] y e. A) |
| 3 | 2 | abeqd | G -> {y | [a / x] y e. A} == {y | [b / x] y e. A} |
| 4 | 3 | conv sbs | G -> S[a / x] A == S[b / x] A |