theorem sbseq1d {x: nat} (G: wff) (a b: nat) (A: set x):
  $ G -> a = b $ >
  $ G -> S[a / x] A == S[b / x] A $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hyp h | G -> a = b | |
| 2 | 1 | sbeq1d | G -> ([a / x] y e. A <-> [b / x] y e. A) | 
| 3 | 2 | abeqd | G -> {y | [a / x] y e. A} == {y | [b / x] y e. A} | 
| 4 | 3 | conv sbs | G -> S[a / x] A == S[b / x] A |