Theorem nflam | index | src |

theorem nflam {x y: nat} (a: nat x y): $ FN/ x a $ > $ FS/ x \ y, a $;
StepHypRefExpression
1 nfnv
FN/ x p
2 nfnv
FN/ x y
3 hyp h
FN/ x a
4 2, 3 nfpr
FN/ x y, a
5 1, 4 nf_eq
F/ x p = y, a
6 5 nfex
F/ x E. y p = y, a
7 6 nfab
FS/ x {p | E. y p = y, a}
8 7 conv lam
FS/ x \ y, a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)