theorem cbvlamh {x y: nat} (a b: nat x y):
$ FN/ y a $ >
$ FN/ x b $ >
$ x = y -> a = b $ >
$ \ x, a == \ y, b $;
Step | Hyp | Ref | Expression |
1 |
|
nfnv |
FN/ y x |
2 |
|
hyp h1 |
FN/ y a |
3 |
1, 2 |
nfpr |
FN/ y x, a |
4 |
3 |
nfeq2 |
F/ y p1 = x, a |
5 |
|
nfnv |
FN/ x y |
6 |
|
hyp h2 |
FN/ x b |
7 |
5, 6 |
nfpr |
FN/ x y, b |
8 |
7 |
nfeq2 |
F/ x p1 = y, b |
9 |
|
id |
x = y -> x = y |
10 |
|
hyp e |
x = y -> a = b |
11 |
9, 10 |
preqd |
x = y -> x, a = y, b |
12 |
11 |
eqeq2d |
x = y -> (p1 = x, a <-> p1 = y, b) |
13 |
4, 8, 12 |
cbvexh |
E. x p1 = x, a <-> E. y p1 = y, b |
14 |
|
eqeq1 |
p1 = p2 -> (p1 = y, b <-> p2 = y, b) |
15 |
14 |
exeqd |
p1 = p2 -> (E. y p1 = y, b <-> E. y p2 = y, b) |
16 |
13, 15 |
syl5bb |
p1 = p2 -> (E. x p1 = x, a <-> E. y p2 = y, b) |
17 |
16 |
cbvab |
{p1 | E. x p1 = x, a} == {p2 | E. y p2 = y, b} |
18 |
17 |
conv lam |
\ x, a == \ y, b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)