Theorem cbvlam | index | src |

theorem cbvlam {x y: nat} (a: nat x) (b: nat y):
  $ x = y -> a = b $ >
  $ \ x, a == \ y, b $;
StepHypRefExpression
1 nfnv
FN/ y a
2 nfnv
FN/ x b
3 hyp e
x = y -> a = b
4 1, 2, 3 cbvlamh
\ x, a == \ y, b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)