theorem receqd (_G: wff) (_z1 _z2: nat) (_S1 _S2: set) (_n1 _n2: nat):
$ _G -> _z1 = _z2 $ >
$ _G -> _S1 == _S2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> rec _z1 _S1 _n1 = rec _z2 _S2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> pset a @ 0 = pset a @ 0 |
2 |
|
hyp _zh |
_G -> _z1 = _z2 |
3 |
1, 2 |
eqeqd |
_G -> (pset a @ 0 = _z1 <-> pset a @ 0 = _z2) |
4 |
|
eqsidd |
_G -> pset a == pset a |
5 |
|
hyp _nh |
_G -> _n1 = _n2 |
6 |
4, 5 |
appeqd |
_G -> pset a @ _n1 = pset a @ _n2 |
7 |
|
eqidd |
_G -> v = v |
8 |
6, 7 |
eqeqd |
_G -> (pset a @ _n1 = v <-> pset a @ _n2 = v) |
9 |
3, 8 |
aneqd |
_G -> (pset a @ 0 = _z1 /\ pset a @ _n1 = v <-> pset a @ 0 = _z2 /\ pset a @ _n2 = v) |
10 |
|
eqidd |
_G -> i = i |
11 |
10, 5 |
lteqd |
_G -> (i < _n1 <-> i < _n2) |
12 |
|
eqidd |
_G -> pset a @ suc i = pset a @ suc i |
13 |
|
hyp _Sh |
_G -> _S1 == _S2 |
14 |
|
eqidd |
_G -> pset a @ i = pset a @ i |
15 |
13, 14 |
appeqd |
_G -> _S1 @ (pset a @ i) = _S2 @ (pset a @ i) |
16 |
12, 15 |
eqeqd |
_G -> (pset a @ suc i = _S1 @ (pset a @ i) <-> pset a @ suc i = _S2 @ (pset a @ i)) |
17 |
11, 16 |
imeqd |
_G -> (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i) <-> i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i)) |
18 |
17 |
aleqd |
_G -> (A. i (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i)) <-> A. i (i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i))) |
19 |
9, 18 |
aneqd |
_G ->
(pset a @ 0 = _z1 /\ pset a @ _n1 = v /\ A. i (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i)) <->
pset a @ 0 = _z2 /\ pset a @ _n2 = v /\ A. i (i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i))) |
20 |
19 |
exeqd |
_G ->
(E. a (pset a @ 0 = _z1 /\ pset a @ _n1 = v /\ A. i (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i))) <->
E. a (pset a @ 0 = _z2 /\ pset a @ _n2 = v /\ A. i (i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i)))) |
21 |
20 |
abeqd |
_G ->
{v | E. a (pset a @ 0 = _z1 /\ pset a @ _n1 = v /\ A. i (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i)))} ==
{v | E. a (pset a @ 0 = _z2 /\ pset a @ _n2 = v /\ A. i (i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i)))} |
22 |
21 |
theeqd |
_G ->
the {v | E. a (pset a @ 0 = _z1 /\ pset a @ _n1 = v /\ A. i (i < _n1 -> pset a @ suc i = _S1 @ (pset a @ i)))} =
the {v | E. a (pset a @ 0 = _z2 /\ pset a @ _n2 = v /\ A. i (i < _n2 -> pset a @ suc i = _S2 @ (pset a @ i)))} |
23 |
22 |
conv rec |
_G -> rec _z1 _S1 _n1 = rec _z2 _S2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)