Theorem appeqd | index | src |

theorem appeqd (_G: wff) (_F1 _F2: set) (_x1 _x2: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _x1 = _x2 $ >
  $ _G -> _F1 @ _x1 = _F2 @ _x2 $;
StepHypRefExpression
1 hyp _xh
_G -> _x1 = _x2
2 eqidd
_G -> y = y
3 1, 2 preqd
_G -> _x1, y = _x2, y
4 hyp _Fh
_G -> _F1 == _F2
5 3, 4 eleqd
_G -> (_x1, y e. _F1 <-> _x2, y e. _F2)
6 5 abeqd
_G -> {y | _x1, y e. _F1} == {y | _x2, y e. _F2}
7 6 theeqd
_G -> the {y | _x1, y e. _F1} = the {y | _x2, y e. _F2}
8 7 conv app
_G -> _F1 @ _x1 = _F2 @ _x2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)