theorem eqrappb (A B: set) {x: nat}: $ A == B <-> A. x A @' x == B @' x $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(A == B <-> A C_ B /\ B C_ A) -> (A. x A @' x == B @' x <-> A C_ B /\ B C_ A) -> (A == B <-> A. x A @' x == B @' x) |
2 |
|
ssasymb |
A == B <-> A C_ B /\ B C_ A |
3 |
1, 2 |
ax_mp |
(A. x A @' x == B @' x <-> A C_ B /\ B C_ A) -> (A == B <-> A. x A @' x == B @' x) |
4 |
|
bitr |
(A. x A @' x == B @' x <-> A. x (A @' x C_ B @' x /\ B @' x C_ A @' x)) ->
(A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) ->
(A. x A @' x == B @' x <-> A C_ B /\ B C_ A) |
5 |
|
ssasymb |
A @' x == B @' x <-> A @' x C_ B @' x /\ B @' x C_ A @' x |
6 |
5 |
aleqi |
A. x A @' x == B @' x <-> A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) |
7 |
4, 6 |
ax_mp |
(A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) -> (A. x A @' x == B @' x <-> A C_ B /\ B C_ A) |
8 |
|
bitr4 |
(A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) ->
(A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) ->
(A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) |
9 |
|
alan |
A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x |
10 |
8, 9 |
ax_mp |
(A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) -> (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) |
11 |
|
aneq |
(A C_ B <-> A. x A @' x C_ B @' x) -> (B C_ A <-> A. x B @' x C_ A @' x) -> (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) |
12 |
|
rappssb |
A C_ B <-> A. x A @' x C_ B @' x |
13 |
11, 12 |
ax_mp |
(B C_ A <-> A. x B @' x C_ A @' x) -> (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) |
14 |
|
rappssb |
B C_ A <-> A. x B @' x C_ A @' x |
15 |
13, 14 |
ax_mp |
A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x |
16 |
10, 15 |
ax_mp |
A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A |
17 |
7, 16 |
ax_mp |
A. x A @' x == B @' x <-> A C_ B /\ B C_ A |
18 |
3, 17 |
ax_mp |
A == B <-> A. x A @' x == B @' x |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)