theorem eqrappb (A B: set) {x: nat}: $ A == B <-> A. x A @' x == B @' x $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr4 | 
          (A == B <-> A C_ B /\ B C_ A) -> (A. x A @' x == B @' x <-> A C_ B /\ B C_ A) -> (A == B <-> A. x A @' x == B @' x)  | 
        
        
          | 2 | 
           | 
          ssasymb | 
          A == B <-> A C_ B /\ B C_ A  | 
        
        
          | 3 | 
          1, 2 | 
          ax_mp | 
          (A. x A @' x == B @' x <-> A C_ B /\ B C_ A) -> (A == B <-> A. x A @' x == B @' x)  | 
        
        
          | 4 | 
           | 
          bitr | 
          (A. x A @' x == B @' x <-> A. x (A @' x C_ B @' x /\ B @' x C_ A @' x)) ->
  (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) ->
  (A. x A @' x == B @' x <-> A C_ B /\ B C_ A)  | 
        
        
          | 5 | 
           | 
          ssasymb | 
          A @' x == B @' x <-> A @' x C_ B @' x /\ B @' x C_ A @' x  | 
        
        
          | 6 | 
          5 | 
          aleqi | 
          A. x A @' x == B @' x <-> A. x (A @' x C_ B @' x /\ B @' x C_ A @' x)  | 
        
        
          | 7 | 
          4, 6 | 
          ax_mp | 
          (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A) -> (A. x A @' x == B @' x <-> A C_ B /\ B C_ A)  | 
        
        
          | 8 | 
           | 
          bitr4 | 
          (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) ->
  (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) ->
  (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A)  | 
        
        
          | 9 | 
           | 
          alan | 
          A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x  | 
        
        
          | 10 | 
          8, 9 | 
          ax_mp | 
          (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x) -> (A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A)  | 
        
        
          | 11 | 
           | 
          aneq | 
          (A C_ B <-> A. x A @' x C_ B @' x) -> (B C_ A <-> A. x B @' x C_ A @' x) -> (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x)  | 
        
        
          | 12 | 
           | 
          rappssb | 
          A C_ B <-> A. x A @' x C_ B @' x  | 
        
        
          | 13 | 
          11, 12 | 
          ax_mp | 
          (B C_ A <-> A. x B @' x C_ A @' x) -> (A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x)  | 
        
        
          | 14 | 
           | 
          rappssb | 
          B C_ A <-> A. x B @' x C_ A @' x  | 
        
        
          | 15 | 
          13, 14 | 
          ax_mp | 
          A C_ B /\ B C_ A <-> A. x A @' x C_ B @' x /\ A. x B @' x C_ A @' x  | 
        
        
          | 16 | 
          10, 15 | 
          ax_mp | 
          A. x (A @' x C_ B @' x /\ B @' x C_ A @' x) <-> A C_ B /\ B C_ A  | 
        
        
          | 17 | 
          7, 16 | 
          ax_mp | 
          A. x A @' x == B @' x <-> A C_ B /\ B C_ A  | 
        
        
          | 18 | 
          3, 17 | 
          ax_mp | 
          A == B <-> A. x A @' x == B @' x  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)