Theorem rappssb | index | src |

theorem rappssb (A B: set) {x: nat}: $ A C_ B <-> A. x A @' x C_ B @' x $;
StepHypRefExpression
2
A C_ B <-> A. x A. a1 (x, a1 e. A -> x, a1 e. B)
4
A. a1 (x, a1 e. A -> x, a1 e. B) <-> {a1 | x, a1 e. A} C_ {a1 | x, a1 e. B}
5
conv rapp
A. a1 (x, a1 e. A -> x, a1 e. B) <-> A @' x C_ B @' x
6
A. x A. a1 (x, a1 e. A -> x, a1 e. B) <-> A. x A @' x C_ B @' x
7
2, 6
A C_ B <-> A. x A @' x C_ B @' x

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)