theorem rappss (A B: set) (a: nat): $ A C_ B -> A @' a C_ B @' a $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel | A C_ B -> a, a1 e. A -> a, a1 e. B  | 
        |
| 2 | 1 | ssabd | A C_ B -> {a1 | a, a1 e. A} C_ {a1 | a, a1 e. B} | 
        
| 3 | 2 | conv rapp | A C_ B -> A @' a C_ B @' a  |