Theorem oreq2d | index | src |

theorem oreq2d (_G a _b1 _b2: wff):
  $ _G -> (_b1 <-> _b2) $ >
  $ _G -> (a \/ _b1 <-> a \/ _b2) $;
StepHypRefExpression
1 biidd
_G -> (a <-> a)
2 hyp _h
_G -> (_b1 <-> _b2)
3 1, 2 oreqd
_G -> (a \/ _b1 <-> a \/ _b2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)