theorem indlt (G: wff) {x y: nat} (a: nat) (px: wff x) (p0 pa py ps: wff y):
$ x = a -> (px <-> pa) $ >
$ x = 0 -> (px <-> p0) $ >
$ x = y -> (px <-> py) $ >
$ x = suc y -> (px <-> ps) $ >
$ G -> p0 $ >
$ G /\ y < a /\ py -> ps $ >
$ G -> pa $;
Step | Hyp | Ref | Expression |
1 |
|
leid |
a <= a |
2 |
|
leeq1 |
x = a -> (x <= a <-> a <= a) |
3 |
|
hyp ha |
x = a -> (px <-> pa) |
4 |
2, 3 |
imeqd |
x = a -> (x <= a -> px <-> a <= a -> pa) |
5 |
|
leeq1 |
x = 0 -> (x <= a <-> 0 <= a) |
6 |
|
hyp h0 |
x = 0 -> (px <-> p0) |
7 |
5, 6 |
imeqd |
x = 0 -> (x <= a -> px <-> 0 <= a -> p0) |
8 |
|
leeq1 |
x = y -> (x <= a <-> y <= a) |
9 |
|
hyp hy |
x = y -> (px <-> py) |
10 |
8, 9 |
imeqd |
x = y -> (x <= a -> px <-> y <= a -> py) |
11 |
|
leeq1 |
x = suc y -> (x <= a <-> suc y <= a) |
12 |
|
hyp hs |
x = suc y -> (px <-> ps) |
13 |
11, 12 |
imeqd |
x = suc y -> (x <= a -> px <-> suc y <= a -> ps) |
14 |
|
hyp h1 |
G -> p0 |
15 |
14 |
a1d |
G -> 0 <= a -> p0 |
16 |
|
ltle |
y < a -> y <= a |
17 |
16 |
imim1i |
(y <= a -> py) -> y < a -> py |
18 |
|
hyp h2 |
G /\ y < a /\ py -> ps |
19 |
18 |
exp |
G /\ y < a -> py -> ps |
20 |
19 |
exp |
G -> y < a -> py -> ps |
21 |
20 |
a2d |
G -> (y < a -> py) -> y < a -> ps |
22 |
21 |
conv lt |
G -> (y < a -> py) -> suc y <= a -> ps |
23 |
17, 22 |
syl5 |
G -> (y <= a -> py) -> suc y <= a -> ps |
24 |
23 |
imp |
G /\ (y <= a -> py) -> suc y <= a -> ps |
25 |
4, 7, 10, 13, 15, 24 |
indd |
G -> a <= a -> pa |
26 |
1, 25 |
mpi |
G -> pa |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)