theorem subsub (a b c: nat): $ a - b - c = a - (b + c) $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(a <= b + c -> a - b - c = a - (b + c)) -> (b + c <= a -> a - b - c = a - (b + c)) -> a <= b + c \/ b + c <= a -> a - b - c = a - (b + c) |
2 |
|
lesubeq0 |
a - b <= c <-> a - b - c = 0 |
3 |
|
lesubadd2 |
a - b <= c <-> a <= b + c |
4 |
3 |
bi2i |
a <= b + c -> a - b <= c |
5 |
2, 4 |
sylib |
a <= b + c -> a - b - c = 0 |
6 |
|
lesubeq0 |
a <= b + c <-> a - (b + c) = 0 |
7 |
6 |
bi1i |
a <= b + c -> a - (b + c) = 0 |
8 |
5, 7 |
eqtr4d |
a <= b + c -> a - b - c = a - (b + c) |
9 |
1, 8 |
ax_mp |
(b + c <= a -> a - b - c = a - (b + c)) -> a <= b + c \/ b + c <= a -> a - b - c = a - (b + c) |
10 |
|
eqsub1 |
a - b - c + (b + c) = a -> a - (b + c) = a - b - c |
11 |
|
addlass |
a - b - c + (b + c) = b + (a - b - c + c) |
12 |
|
npcan |
c <= a - b -> a - b - c + c = a - b |
13 |
|
leaddsub2i |
b + c <= a -> c <= a - b |
14 |
12, 13 |
syl |
b + c <= a -> a - b - c + c = a - b |
15 |
14 |
addeq2d |
b + c <= a -> b + (a - b - c + c) = b + (a - b) |
16 |
|
pncan3 |
b <= a -> b + (a - b) = a |
17 |
|
letr |
b <= b + c -> b + c <= a -> b <= a |
18 |
|
leaddid1 |
b <= b + c |
19 |
17, 18 |
ax_mp |
b + c <= a -> b <= a |
20 |
16, 19 |
syl |
b + c <= a -> b + (a - b) = a |
21 |
15, 20 |
eqtrd |
b + c <= a -> b + (a - b - c + c) = a |
22 |
11, 21 |
syl5eq |
b + c <= a -> a - b - c + (b + c) = a |
23 |
10, 22 |
syl |
b + c <= a -> a - (b + c) = a - b - c |
24 |
23 |
eqcomd |
b + c <= a -> a - b - c = a - (b + c) |
25 |
9, 24 |
ax_mp |
a <= b + c \/ b + c <= a -> a - b - c = a - (b + c) |
26 |
|
leorle |
a <= b + c \/ b + c <= a |
27 |
25, 26 |
ax_mp |
a - b - c = a - (b + c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)