Theorem subsub | index | src |

theorem subsub (a b c: nat): $ a - b - c = a - (b + c) $;
StepHypRefExpression
1 eor
(a <= b + c -> a - b - c = a - (b + c)) -> (b + c <= a -> a - b - c = a - (b + c)) -> a <= b + c \/ b + c <= a -> a - b - c = a - (b + c)
2 lesubeq0
a - b <= c <-> a - b - c = 0
3 lesubadd2
a - b <= c <-> a <= b + c
4 3 bi2i
a <= b + c -> a - b <= c
5 2, 4 sylib
a <= b + c -> a - b - c = 0
6 lesubeq0
a <= b + c <-> a - (b + c) = 0
7 6 bi1i
a <= b + c -> a - (b + c) = 0
8 5, 7 eqtr4d
a <= b + c -> a - b - c = a - (b + c)
9 1, 8 ax_mp
(b + c <= a -> a - b - c = a - (b + c)) -> a <= b + c \/ b + c <= a -> a - b - c = a - (b + c)
10 eqsub1
a - b - c + (b + c) = a -> a - (b + c) = a - b - c
11 addlass
a - b - c + (b + c) = b + (a - b - c + c)
12 npcan
c <= a - b -> a - b - c + c = a - b
13 leaddsub2i
b + c <= a -> c <= a - b
14 12, 13 syl
b + c <= a -> a - b - c + c = a - b
15 14 addeq2d
b + c <= a -> b + (a - b - c + c) = b + (a - b)
16 pncan3
b <= a -> b + (a - b) = a
17 letr
b <= b + c -> b + c <= a -> b <= a
18 leaddid1
b <= b + c
19 17, 18 ax_mp
b + c <= a -> b <= a
20 16, 19 syl
b + c <= a -> b + (a - b) = a
21 15, 20 eqtrd
b + c <= a -> b + (a - b - c + c) = a
22 11, 21 syl5eq
b + c <= a -> a - b - c + (b + c) = a
23 10, 22 syl
b + c <= a -> a - (b + c) = a - b - c
24 23 eqcomd
b + c <= a -> a - b - c = a - (b + c)
25 9, 24 ax_mp
a <= b + c \/ b + c <= a -> a - b - c = a - (b + c)
26 leorle
a <= b + c \/ b + c <= a
27 25, 26 ax_mp
a - b - c = a - (b + c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)