theorem leaddsub2i (a b c: nat): $ a + b <= c -> b <= c - a $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | leeq1 | a + b = b + a -> (a + b <= c <-> b + a <= c) | |
| 2 | addcom | a + b = b + a | |
| 3 | 1, 2 | ax_mp | a + b <= c <-> b + a <= c | 
| 4 | leaddsubi | b + a <= c -> b <= c - a | |
| 5 | 3, 4 | sylbi | a + b <= c -> b <= c - a |