theorem leaddsubi (a b c: nat): $ a + b <= c -> a <= c - b $;
Step | Hyp | Ref | Expression |
1 |
|
leaddsub |
b <= c -> (a + b <= c <-> a <= c - b) |
2 |
|
letr |
b <= a + b -> a + b <= c -> b <= c |
3 |
|
leaddid2 |
b <= a + b |
4 |
2, 3 |
ax_mp |
a + b <= c -> b <= c |
5 |
1, 4 |
syl |
a + b <= c -> (a + b <= c <-> a <= c - b) |
6 |
|
id |
a + b <= c -> a + b <= c |
7 |
5, 6 |
mpbid |
a + b <= c -> a <= c - b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)