Theorem leaddsubi | index | src |

theorem leaddsubi (a b c: nat): $ a + b <= c -> a <= c - b $;
StepHypRefExpression
1 leaddsub
b <= c -> (a + b <= c <-> a <= c - b)
2 letr
b <= a + b -> a + b <= c -> b <= c
3 leaddid2
b <= a + b
4 2, 3 ax_mp
a + b <= c -> b <= c
5 1, 4 syl
a + b <= c -> (a + b <= c <-> a <= c - b)
6 id
a + b <= c -> a + b <= c
7 5, 6 mpbid
a + b <= c -> a <= c - b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)