Theorem leaddsub | index | src |

theorem leaddsub (a b c: nat): $ b <= c -> (a + b <= c <-> a <= c - b) $;
StepHypRefExpression
1 lenlt
a + b <= c <-> ~c < a + b
2 lenlt
a <= c - b <-> ~c - b < a
3 ltsubadd
b <= c -> (c - b < a <-> c < a + b)
4 3 bicomd
b <= c -> (c < a + b <-> c - b < a)
5 4 noteqd
b <= c -> (~c < a + b <-> ~c - b < a)
6 1, 2, 5 bitr4g
b <= c -> (a + b <= c <-> a <= c - b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)