theorem bitr4g (a b c d e: wff): $ d <-> b $ > $ e <-> c $ > $ a -> (b <-> c) $ > $ a -> (d <-> e) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h1 | d <-> b |
|
| 2 | bicom | (e <-> c) -> (c <-> e) |
|
| 3 | hyp h2 | e <-> c |
|
| 4 | 2, 3 | ax_mp | c <-> e |
| 5 | hyp h | a -> (b <-> c) |
|
| 6 | 4, 5 | syl6bb | a -> (b <-> e) |
| 7 | 1, 6 | syl5bb | a -> (d <-> e) |