| Step | Hyp | Ref | Expression |
| 1 |
|
ltsucid |
a < suc a |
| 2 |
|
lteq1 |
x = a -> (x < suc a <-> a < suc a) |
| 3 |
|
hyp ha |
x = a -> (px <-> pa) |
| 4 |
2, 3 |
imeqd |
x = a -> (x < suc a -> px <-> a < suc a -> pa) |
| 5 |
4 |
eale |
A. x (x < suc a -> px) -> a < suc a -> pa |
| 6 |
1, 5 |
mpi |
A. x (x < suc a -> px) -> pa |
| 7 |
|
eqidd |
z = suc a -> x = x |
| 8 |
|
id |
z = suc a -> z = suc a |
| 9 |
7, 8 |
lteqd |
z = suc a -> (x < z <-> x < suc a) |
| 10 |
|
biidd |
z = suc a -> (px <-> px) |
| 11 |
9, 10 |
imeqd |
z = suc a -> (x < z -> px <-> x < suc a -> px) |
| 12 |
11 |
aleqd |
z = suc a -> (A. x (x < z -> px) <-> A. x (x < suc a -> px)) |
| 13 |
|
eqidd |
z = 0 -> x = x |
| 14 |
|
id |
z = 0 -> z = 0 |
| 15 |
13, 14 |
lteqd |
z = 0 -> (x < z <-> x < 0) |
| 16 |
|
biidd |
z = 0 -> (px <-> px) |
| 17 |
15, 16 |
imeqd |
z = 0 -> (x < z -> px <-> x < 0 -> px) |
| 18 |
17 |
aleqd |
z = 0 -> (A. x (x < z -> px) <-> A. x (x < 0 -> px)) |
| 19 |
|
eqidd |
z = y -> x = x |
| 20 |
|
id |
z = y -> z = y |
| 21 |
19, 20 |
lteqd |
z = y -> (x < z <-> x < y) |
| 22 |
|
biidd |
z = y -> (px <-> px) |
| 23 |
21, 22 |
imeqd |
z = y -> (x < z -> px <-> x < y -> px) |
| 24 |
23 |
aleqd |
z = y -> (A. x (x < z -> px) <-> A. x (x < y -> px)) |
| 25 |
|
eqidd |
z = suc y -> x = x |
| 26 |
|
id |
z = suc y -> z = suc y |
| 27 |
25, 26 |
lteqd |
z = suc y -> (x < z <-> x < suc y) |
| 28 |
|
biidd |
z = suc y -> (px <-> px) |
| 29 |
27, 28 |
imeqd |
z = suc y -> (x < z -> px <-> x < suc y -> px) |
| 30 |
29 |
aleqd |
z = suc y -> (A. x (x < z -> px) <-> A. x (x < suc y -> px)) |
| 31 |
|
absurd |
~x < 0 -> x < 0 -> px |
| 32 |
|
lt02 |
~x < 0 |
| 33 |
31, 32 |
ax_mp |
x < 0 -> px |
| 34 |
33 |
ax_gen |
A. x (x < 0 -> px) |
| 35 |
34 |
a1i |
G -> A. x (x < 0 -> px) |
| 36 |
|
hyp h |
G /\ A. x (x < y -> px) -> py |
| 37 |
|
hyp hy |
x = y -> (px <-> py) |
| 38 |
37 |
bi2d |
x = y -> py -> px |
| 39 |
38 |
com12 |
py -> x = y -> px |
| 40 |
39 |
iald |
py -> A. x (x = y -> px) |
| 41 |
36, 40 |
rsyl |
G /\ A. x (x < y -> px) -> A. x (x = y -> px) |
| 42 |
|
bitr3 |
(x <= y <-> x < suc y) -> (x <= y <-> x < y \/ x = y) -> (x < suc y <-> x < y \/ x = y) |
| 43 |
|
leltsuc |
x <= y <-> x < suc y |
| 44 |
42, 43 |
ax_mp |
(x <= y <-> x < y \/ x = y) -> (x < suc y <-> x < y \/ x = y) |
| 45 |
|
leloe |
x <= y <-> x < y \/ x = y |
| 46 |
44, 45 |
ax_mp |
x < suc y <-> x < y \/ x = y |
| 47 |
46 |
bi1i |
x < suc y -> x < y \/ x = y |
| 48 |
47 |
imim1i |
(x < y \/ x = y -> px) -> x < suc y -> px |
| 49 |
|
eor |
(x < y -> px) -> (x = y -> px) -> x < y \/ x = y -> px |
| 50 |
48, 49 |
syl6 |
(x < y -> px) -> (x = y -> px) -> x < suc y -> px |
| 51 |
50 |
al2imi |
A. x (x < y -> px) -> A. x (x = y -> px) -> A. x (x < suc y -> px) |
| 52 |
51 |
anwr |
G /\ A. x (x < y -> px) -> A. x (x = y -> px) -> A. x (x < suc y -> px) |
| 53 |
41, 52 |
mpd |
G /\ A. x (x < y -> px) -> A. x (x < suc y -> px) |
| 54 |
12, 18, 24, 30, 35, 53 |
indd |
G -> A. x (x < suc a -> px) |
| 55 |
6, 54 |
syl |
G -> pa |