Step | Hyp | Ref | Expression |
1 |
|
ltsucid |
a < suc a |
2 |
|
lteq1 |
x = a -> (x < suc a <-> a < suc a) |
3 |
|
hyp ha |
x = a -> (px <-> pa) |
4 |
2, 3 |
imeqd |
x = a -> (x < suc a -> px <-> a < suc a -> pa) |
5 |
4 |
eale |
A. x (x < suc a -> px) -> a < suc a -> pa |
6 |
1, 5 |
mpi |
A. x (x < suc a -> px) -> pa |
7 |
|
eqidd |
z = suc a -> x = x |
8 |
|
id |
z = suc a -> z = suc a |
9 |
7, 8 |
lteqd |
z = suc a -> (x < z <-> x < suc a) |
10 |
|
biidd |
z = suc a -> (px <-> px) |
11 |
9, 10 |
imeqd |
z = suc a -> (x < z -> px <-> x < suc a -> px) |
12 |
11 |
aleqd |
z = suc a -> (A. x (x < z -> px) <-> A. x (x < suc a -> px)) |
13 |
|
eqidd |
z = 0 -> x = x |
14 |
|
id |
z = 0 -> z = 0 |
15 |
13, 14 |
lteqd |
z = 0 -> (x < z <-> x < 0) |
16 |
|
biidd |
z = 0 -> (px <-> px) |
17 |
15, 16 |
imeqd |
z = 0 -> (x < z -> px <-> x < 0 -> px) |
18 |
17 |
aleqd |
z = 0 -> (A. x (x < z -> px) <-> A. x (x < 0 -> px)) |
19 |
|
eqidd |
z = y -> x = x |
20 |
|
id |
z = y -> z = y |
21 |
19, 20 |
lteqd |
z = y -> (x < z <-> x < y) |
22 |
|
biidd |
z = y -> (px <-> px) |
23 |
21, 22 |
imeqd |
z = y -> (x < z -> px <-> x < y -> px) |
24 |
23 |
aleqd |
z = y -> (A. x (x < z -> px) <-> A. x (x < y -> px)) |
25 |
|
eqidd |
z = suc y -> x = x |
26 |
|
id |
z = suc y -> z = suc y |
27 |
25, 26 |
lteqd |
z = suc y -> (x < z <-> x < suc y) |
28 |
|
biidd |
z = suc y -> (px <-> px) |
29 |
27, 28 |
imeqd |
z = suc y -> (x < z -> px <-> x < suc y -> px) |
30 |
29 |
aleqd |
z = suc y -> (A. x (x < z -> px) <-> A. x (x < suc y -> px)) |
31 |
|
absurd |
~x < 0 -> x < 0 -> px |
32 |
|
lt02 |
~x < 0 |
33 |
31, 32 |
ax_mp |
x < 0 -> px |
34 |
33 |
ax_gen |
A. x (x < 0 -> px) |
35 |
34 |
a1i |
G -> A. x (x < 0 -> px) |
36 |
|
hyp h |
G /\ A. x (x < y -> px) -> py |
37 |
|
hyp hy |
x = y -> (px <-> py) |
38 |
37 |
bi2d |
x = y -> py -> px |
39 |
38 |
com12 |
py -> x = y -> px |
40 |
39 |
iald |
py -> A. x (x = y -> px) |
41 |
36, 40 |
rsyl |
G /\ A. x (x < y -> px) -> A. x (x = y -> px) |
42 |
|
bitr3 |
(x <= y <-> x < suc y) -> (x <= y <-> x < y \/ x = y) -> (x < suc y <-> x < y \/ x = y) |
43 |
|
leltsuc |
x <= y <-> x < suc y |
44 |
42, 43 |
ax_mp |
(x <= y <-> x < y \/ x = y) -> (x < suc y <-> x < y \/ x = y) |
45 |
|
leloe |
x <= y <-> x < y \/ x = y |
46 |
44, 45 |
ax_mp |
x < suc y <-> x < y \/ x = y |
47 |
46 |
bi1i |
x < suc y -> x < y \/ x = y |
48 |
47 |
imim1i |
(x < y \/ x = y -> px) -> x < suc y -> px |
49 |
|
eor |
(x < y -> px) -> (x = y -> px) -> x < y \/ x = y -> px |
50 |
48, 49 |
syl6 |
(x < y -> px) -> (x = y -> px) -> x < suc y -> px |
51 |
50 |
al2imi |
A. x (x < y -> px) -> A. x (x = y -> px) -> A. x (x < suc y -> px) |
52 |
51 |
anwr |
G /\ A. x (x < y -> px) -> A. x (x = y -> px) -> A. x (x < suc y -> px) |
53 |
41, 52 |
mpd |
G /\ A. x (x < y -> px) -> A. x (x < suc y -> px) |
54 |
12, 18, 24, 30, 35, 53 |
indd |
G -> A. x (x < suc a -> px) |
55 |
6, 54 |
syl |
G -> pa |