| Step | Hyp | Ref | Expression |
| 1 |
|
lameq |
A. x a = b -> \ x, a == \ x, b |
| 2 |
|
abeqb |
A. p (E. x p = x, a <-> E. x p = x, b) <-> {p | E. x p = x, a} == {p | E. x p = x, b} |
| 3 |
2 |
conv lam |
A. p (E. x p = x, a <-> E. x p = x, b) <-> \ x, a == \ x, b |
| 4 |
|
nfv |
F/ y a = b |
| 5 |
|
nfsbn1 |
FN/ x N[y / x] a |
| 6 |
|
nfsbn1 |
FN/ x N[y / x] b |
| 7 |
5, 6 |
nf_eq |
F/ x N[y / x] a = N[y / x] b |
| 8 |
|
sbnq |
x = y -> a = N[y / x] a |
| 9 |
|
sbnq |
x = y -> b = N[y / x] b |
| 10 |
8, 9 |
eqeqd |
x = y -> (a = b <-> N[y / x] a = N[y / x] b) |
| 11 |
4, 7, 10 |
cbvalh |
A. x a = b <-> A. y N[y / x] a = N[y / x] b |
| 12 |
|
prth |
y, N[y / x] a = z, N[z / x] b <-> y = z /\ N[y / x] a = N[z / x] b |
| 13 |
|
sbneq1 |
y = z -> N[y / x] b = N[z / x] b |
| 14 |
13 |
eqeq2d |
y = z -> (N[y / x] a = N[y / x] b <-> N[y / x] a = N[z / x] b) |
| 15 |
14 |
bi2d |
y = z -> N[y / x] a = N[z / x] b -> N[y / x] a = N[y / x] b |
| 16 |
15 |
imp |
y = z /\ N[y / x] a = N[z / x] b -> N[y / x] a = N[y / x] b |
| 17 |
12, 16 |
sylbi |
y, N[y / x] a = z, N[z / x] b -> N[y / x] a = N[y / x] b |
| 18 |
17 |
eex |
E. z y, N[y / x] a = z, N[z / x] b -> N[y / x] a = N[y / x] b |
| 19 |
|
id |
z = y -> z = y |
| 20 |
|
sbneq1 |
z = y -> N[z / x] a = N[y / x] a |
| 21 |
19, 20 |
preqd |
z = y -> z, N[z / x] a = y, N[y / x] a |
| 22 |
21 |
eqeq2d |
z = y -> (y, N[y / x] a = z, N[z / x] a <-> y, N[y / x] a = y, N[y / x] a) |
| 23 |
22 |
iexe |
y, N[y / x] a = y, N[y / x] a -> E. z y, N[y / x] a = z, N[z / x] a |
| 24 |
|
eqid |
y, N[y / x] a = y, N[y / x] a |
| 25 |
23, 24 |
ax_mp |
E. z y, N[y / x] a = z, N[z / x] a |
| 26 |
|
nfv |
F/ z p = x, a |
| 27 |
|
nfnv |
FN/ x z |
| 28 |
|
nfsbn1 |
FN/ x N[z / x] a |
| 29 |
27, 28 |
nfpr |
FN/ x z, N[z / x] a |
| 30 |
29 |
nfeq2 |
F/ x p = z, N[z / x] a |
| 31 |
|
id |
x = z -> x = z |
| 32 |
|
sbnq |
x = z -> a = N[z / x] a |
| 33 |
31, 32 |
preqd |
x = z -> x, a = z, N[z / x] a |
| 34 |
33 |
eqeq2d |
x = z -> (p = x, a <-> p = z, N[z / x] a) |
| 35 |
26, 30, 34 |
cbvexh |
E. x p = x, a <-> E. z p = z, N[z / x] a |
| 36 |
|
eqeq1 |
p = y, N[y / x] a -> (p = z, N[z / x] a <-> y, N[y / x] a = z, N[z / x] a) |
| 37 |
36 |
exeqd |
p = y, N[y / x] a -> (E. z p = z, N[z / x] a <-> E. z y, N[y / x] a = z, N[z / x] a) |
| 38 |
35, 37 |
syl5bb |
p = y, N[y / x] a -> (E. x p = x, a <-> E. z y, N[y / x] a = z, N[z / x] a) |
| 39 |
|
nfv |
F/ z p = x, b |
| 40 |
|
nfsbn1 |
FN/ x N[z / x] b |
| 41 |
27, 40 |
nfpr |
FN/ x z, N[z / x] b |
| 42 |
41 |
nfeq2 |
F/ x p = z, N[z / x] b |
| 43 |
|
sbnq |
x = z -> b = N[z / x] b |
| 44 |
31, 43 |
preqd |
x = z -> x, b = z, N[z / x] b |
| 45 |
44 |
eqeq2d |
x = z -> (p = x, b <-> p = z, N[z / x] b) |
| 46 |
39, 42, 45 |
cbvexh |
E. x p = x, b <-> E. z p = z, N[z / x] b |
| 47 |
|
eqeq1 |
p = y, N[y / x] a -> (p = z, N[z / x] b <-> y, N[y / x] a = z, N[z / x] b) |
| 48 |
47 |
exeqd |
p = y, N[y / x] a -> (E. z p = z, N[z / x] b <-> E. z y, N[y / x] a = z, N[z / x] b) |
| 49 |
46, 48 |
syl5bb |
p = y, N[y / x] a -> (E. x p = x, b <-> E. z y, N[y / x] a = z, N[z / x] b) |
| 50 |
38, 49 |
bieqd |
p = y, N[y / x] a -> (E. x p = x, a <-> E. x p = x, b <-> (E. z y, N[y / x] a = z, N[z / x] a <-> E. z y, N[y / x] a = z, N[z / x] b)) |
| 51 |
50 |
eale |
A. p (E. x p = x, a <-> E. x p = x, b) -> (E. z y, N[y / x] a = z, N[z / x] a <-> E. z y, N[y / x] a = z, N[z / x] b) |
| 52 |
25, 51 |
mpbii |
A. p (E. x p = x, a <-> E. x p = x, b) -> E. z y, N[y / x] a = z, N[z / x] b |
| 53 |
18, 52 |
syl |
A. p (E. x p = x, a <-> E. x p = x, b) -> N[y / x] a = N[y / x] b |
| 54 |
53 |
iald |
A. p (E. x p = x, a <-> E. x p = x, b) -> A. y N[y / x] a = N[y / x] b |
| 55 |
11, 54 |
sylibr |
A. p (E. x p = x, a <-> E. x p = x, b) -> A. x a = b |
| 56 |
3, 55 |
sylbir |
\ x, a == \ x, b -> A. x a = b |
| 57 |
1, 56 |
ibii |
A. x a = b <-> \ x, a == \ x, b |