Theorem finlamima | index | src |

theorem finlamima (A: set) {x: nat} (v: nat x):
  $ finite A -> finite ((\ x, v) '' A) $;
StepHypRefExpression
1 fineq
Ran ((\ x, v) |` A) == (\ x, v) '' A -> (finite (Ran ((\ x, v) |` A)) <-> finite ((\ x, v) '' A))
2 rnres
Ran ((\ x, v) |` A) == (\ x, v) '' A
3 1, 2 ax_mp
finite (Ran ((\ x, v) |` A)) <-> finite ((\ x, v) '' A)
4 rnfin
finite ((\ x, v) |` A) -> finite (Ran ((\ x, v) |` A))
5 finlam
finite A -> finite ((\ x, v) |` A)
6 4, 5 syl
finite A -> finite (Ran ((\ x, v) |` A))
7 3, 6 sylib
finite A -> finite ((\ x, v) '' A)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)