Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a e. (\ x, v) '' {x | p} <-> a e. (\ y, N[y / x] v) '' {x | p}) ->
(a e. (\ y, N[y / x] v) '' {x | p} <-> E. x (p /\ a = v)) ->
(a e. (\ x, v) '' {x | p} <-> E. x (p /\ a = v)) |
2 |
|
eleq2 |
(\ x, v) '' {x | p} == (\ y, N[y / x] v) '' {x | p} -> (a e. (\ x, v) '' {x | p} <-> a e. (\ y, N[y / x] v) '' {x | p}) |
3 |
|
imaeq1 |
\ x, v == \ y, N[y / x] v -> (\ x, v) '' {x | p} == (\ y, N[y / x] v) '' {x | p} |
4 |
|
cbvlams |
\ x, v == \ y, N[y / x] v |
5 |
3, 4 |
ax_mp |
(\ x, v) '' {x | p} == (\ y, N[y / x] v) '' {x | p} |
6 |
2, 5 |
ax_mp |
a e. (\ x, v) '' {x | p} <-> a e. (\ y, N[y / x] v) '' {x | p} |
7 |
1, 6 |
ax_mp |
(a e. (\ y, N[y / x] v) '' {x | p} <-> E. x (p /\ a = v)) -> (a e. (\ x, v) '' {x | p} <-> E. x (p /\ a = v)) |
8 |
|
bitr4 |
(a e. (\ y, N[y / x] v) '' {x | p} <-> E. y (y e. {x | p} /\ a = N[y / x] v)) ->
(E. x (p /\ a = v) <-> E. y (y e. {x | p} /\ a = N[y / x] v)) ->
(a e. (\ y, N[y / x] v) '' {x | p} <-> E. x (p /\ a = v)) |
9 |
|
ellamima |
a e. (\ y, N[y / x] v) '' {x | p} <-> E. y (y e. {x | p} /\ a = N[y / x] v) |
10 |
8, 9 |
ax_mp |
(E. x (p /\ a = v) <-> E. y (y e. {x | p} /\ a = N[y / x] v)) -> (a e. (\ y, N[y / x] v) '' {x | p} <-> E. x (p /\ a = v)) |
11 |
|
nfv |
F/ y p /\ a = v |
12 |
|
nfab1 |
FS/ x {x | p} |
13 |
12 |
nfel2 |
F/ x y e. {x | p} |
14 |
|
nfsbn1 |
FN/ x N[y / x] v |
15 |
14 |
nfeq2 |
F/ x a = N[y / x] v |
16 |
13, 15 |
nfan |
F/ x y e. {x | p} /\ a = N[y / x] v |
17 |
|
elab |
y e. {x | p} <-> [y / x] p |
18 |
|
sbq |
x = y -> (p <-> [y / x] p) |
19 |
17, 18 |
syl6bbr |
x = y -> (p <-> y e. {x | p}) |
20 |
|
sbnq |
x = y -> v = N[y / x] v |
21 |
20 |
eqeq2d |
x = y -> (a = v <-> a = N[y / x] v) |
22 |
19, 21 |
aneqd |
x = y -> (p /\ a = v <-> y e. {x | p} /\ a = N[y / x] v) |
23 |
11, 16, 22 |
cbvexh |
E. x (p /\ a = v) <-> E. y (y e. {x | p} /\ a = N[y / x] v) |
24 |
10, 23 |
ax_mp |
a e. (\ y, N[y / x] v) '' {x | p} <-> E. x (p /\ a = v) |
25 |
7, 24 |
ax_mp |
a e. (\ x, v) '' {x | p} <-> E. x (p /\ a = v) |