| Step | Hyp | Ref | Expression |
| 1 |
|
resisf |
isfun (\ x, F @ x) -> isfun ((\ x, F @ x) |` A) |
| 2 |
|
lamisf |
isfun (\ x, F @ x) |
| 3 |
1, 2 |
ax_mp |
isfun ((\ x, F @ x) |` A) |
| 4 |
|
isfeq |
(\ x, F @ x) |` A == F -> (isfun ((\ x, F @ x) |` A) <-> isfun F) |
| 5 |
3, 4 |
mpbii |
(\ x, F @ x) |` A == F -> isfun F |
| 6 |
|
dmeq |
(\ x, F @ x) |` A == F -> Dom ((\ x, F @ x) |` A) == Dom F |
| 7 |
|
dmreslam |
Dom ((\ x, F @ x) |` A) == A |
| 8 |
7 |
a1i |
(\ x, F @ x) |` A == F -> Dom ((\ x, F @ x) |` A) == A |
| 9 |
6, 8 |
eqstr3d |
(\ x, F @ x) |` A == F -> Dom F == A |
| 10 |
5, 9 |
iand |
(\ x, F @ x) |` A == F -> isfun F /\ Dom F == A |
| 11 |
|
prelres |
y, z e. (\ x, F @ x) |` A <-> y, z e. \ x, F @ x /\ y e. A |
| 12 |
|
anr |
isfun F /\ Dom F == A -> Dom F == A |
| 13 |
12 |
eleq2d |
isfun F /\ Dom F == A -> (y e. Dom F <-> y e. A) |
| 14 |
13 |
aneq2d |
isfun F /\ Dom F == A -> (y, z e. \ x, F @ x /\ y e. Dom F <-> y, z e. \ x, F @ x /\ y e. A) |
| 15 |
|
impexp |
y, z e. \ x, F @ x /\ y e. Dom F -> y, z e. F <-> y, z e. \ x, F @ x -> y e. Dom F -> y, z e. F |
| 16 |
|
eqeq1 |
p = y, z -> (p = x, F @ x <-> y, z = x, F @ x) |
| 17 |
16 |
exeqd |
p = y, z -> (E. x p = x, F @ x <-> E. x y, z = x, F @ x) |
| 18 |
17 |
elabe |
y, z e. {p | E. x p = x, F @ x} <-> E. x y, z = x, F @ x |
| 19 |
18 |
conv lam |
y, z e. \ x, F @ x <-> E. x y, z = x, F @ x |
| 20 |
|
prth |
y, z = x, F @ x <-> y = x /\ z = F @ x |
| 21 |
|
anl |
y = x /\ z = F @ x -> y = x |
| 22 |
20, 21 |
sylbi |
y, z = x, F @ x -> y = x |
| 23 |
22 |
eleq1d |
y, z = x, F @ x -> (y e. Dom F <-> x e. Dom F) |
| 24 |
|
eleq1 |
y, z = x, F @ x -> (y, z e. F <-> x, F @ x e. F) |
| 25 |
23, 24 |
imeqd |
y, z = x, F @ x -> (y e. Dom F -> y, z e. F <-> x e. Dom F -> x, F @ x e. F) |
| 26 |
|
eldm |
x e. Dom F <-> E. y x, y e. F |
| 27 |
|
anll |
isfun F /\ Dom F == A /\ x, y e. F -> isfun F |
| 28 |
|
anr |
isfun F /\ Dom F == A /\ x, y e. F -> x, y e. F |
| 29 |
27, 28 |
isfappd |
isfun F /\ Dom F == A /\ x, y e. F -> F @ x = y |
| 30 |
29 |
preq2d |
isfun F /\ Dom F == A /\ x, y e. F -> x, F @ x = x, y |
| 31 |
30 |
eleq1d |
isfun F /\ Dom F == A /\ x, y e. F -> (x, F @ x e. F <-> x, y e. F) |
| 32 |
31, 28 |
mpbird |
isfun F /\ Dom F == A /\ x, y e. F -> x, F @ x e. F |
| 33 |
32 |
eexda |
isfun F /\ Dom F == A -> E. y x, y e. F -> x, F @ x e. F |
| 34 |
26, 33 |
syl5bi |
isfun F /\ Dom F == A -> x e. Dom F -> x, F @ x e. F |
| 35 |
25, 34 |
syl5ibrcom |
isfun F /\ Dom F == A -> y, z = x, F @ x -> y e. Dom F -> y, z e. F |
| 36 |
35 |
eexd |
isfun F /\ Dom F == A -> E. x y, z = x, F @ x -> y e. Dom F -> y, z e. F |
| 37 |
19, 36 |
syl5bi |
isfun F /\ Dom F == A -> y, z e. \ x, F @ x -> y e. Dom F -> y, z e. F |
| 38 |
15, 37 |
sylibr |
isfun F /\ Dom F == A -> y, z e. \ x, F @ x /\ y e. Dom F -> y, z e. F |
| 39 |
|
anr |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> x = y |
| 40 |
39 |
appeq2d |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> F @ x = F @ y |
| 41 |
|
an3l |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> isfun F |
| 42 |
|
anlr |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> y, z e. F |
| 43 |
41, 42 |
isfappd |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> F @ y = z |
| 44 |
40, 43 |
eqtrd |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> F @ x = z |
| 45 |
39, 44 |
preqd |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> x, F @ x = y, z |
| 46 |
45 |
eqcomd |
isfun F /\ Dom F == A /\ y, z e. F /\ x = y -> y, z = x, F @ x |
| 47 |
46 |
iexde |
isfun F /\ Dom F == A /\ y, z e. F -> E. x y, z = x, F @ x |
| 48 |
19, 47 |
sylibr |
isfun F /\ Dom F == A /\ y, z e. F -> y, z e. \ x, F @ x |
| 49 |
|
preldm |
y, z e. F -> y e. Dom F |
| 50 |
49 |
anwr |
isfun F /\ Dom F == A /\ y, z e. F -> y e. Dom F |
| 51 |
48, 50 |
iand |
isfun F /\ Dom F == A /\ y, z e. F -> y, z e. \ x, F @ x /\ y e. Dom F |
| 52 |
51 |
exp |
isfun F /\ Dom F == A -> y, z e. F -> y, z e. \ x, F @ x /\ y e. Dom F |
| 53 |
38, 52 |
ibid |
isfun F /\ Dom F == A -> (y, z e. \ x, F @ x /\ y e. Dom F <-> y, z e. F) |
| 54 |
14, 53 |
bitr3d |
isfun F /\ Dom F == A -> (y, z e. \ x, F @ x /\ y e. A <-> y, z e. F) |
| 55 |
11, 54 |
syl5bb |
isfun F /\ Dom F == A -> (y, z e. (\ x, F @ x) |` A <-> y, z e. F) |
| 56 |
55 |
eqrd2 |
isfun F /\ Dom F == A -> (\ x, F @ x) |` A == F |
| 57 |
10, 56 |
ibii |
(\ x, F @ x) |` A == F <-> isfun F /\ Dom F == A |