theorem lamapp (F: set) {x: nat}: $ (\ x, F @ x) |` Dom F == F <-> isfun F $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | ((\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F) -> (isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F) | 
        
          | 2 |  | lamapp2 | (\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F | 
        
          | 3 | 1, 2 | ax_mp | (isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F) | 
        
          | 4 |  | bian2 | Dom F == Dom F -> (isfun F /\ Dom F == Dom F <-> isfun F) | 
        
          | 5 |  | eqsid | Dom F == Dom F | 
        
          | 6 | 4, 5 | ax_mp | isfun F /\ Dom F == Dom F <-> isfun F | 
        
          | 7 | 3, 6 | ax_mp | (\ x, F @ x) |` Dom F == F <-> isfun F | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)