theorem lamapp (F: set) {x: nat}: $ (\ x, F @ x) |` Dom F == F <-> isfun F $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
((\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F) -> (isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F) |
2 |
|
lamapp2 |
(\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F |
3 |
1, 2 |
ax_mp |
(isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F) |
4 |
|
bian2 |
Dom F == Dom F -> (isfun F /\ Dom F == Dom F <-> isfun F) |
5 |
|
eqsid |
Dom F == Dom F |
6 |
4, 5 |
ax_mp |
isfun F /\ Dom F == Dom F <-> isfun F |
7 |
3, 6 |
ax_mp |
(\ x, F @ x) |` Dom F == F <-> isfun F |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)