Theorem lamapp | index | src |

theorem lamapp (F: set) {x: nat}: $ (\ x, F @ x) |` Dom F == F <-> isfun F $;
StepHypRefExpression
1 bitr
((\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F) -> (isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F)
2 lamapp2
(\ x, F @ x) |` Dom F == F <-> isfun F /\ Dom F == Dom F
3 1, 2 ax_mp
(isfun F /\ Dom F == Dom F <-> isfun F) -> ((\ x, F @ x) |` Dom F == F <-> isfun F)
4 bian2
Dom F == Dom F -> (isfun F /\ Dom F == Dom F <-> isfun F)
5 eqsid
Dom F == Dom F
6 4, 5 ax_mp
isfun F /\ Dom F == Dom F <-> isfun F
7 3, 6 ax_mp
(\ x, F @ x) |` Dom F == F <-> isfun F

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)