theorem caseeqd (_G: wff) (_A1 _A2 _B1 _B2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> _B1 == _B2 $ >
$ _G -> case _A1 _B1 == case _A2 _B2 $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
_G -> (odd n <-> odd n) |
2 |
|
hyp _Bh |
_G -> _B1 == _B2 |
3 |
|
eqidd |
_G -> n // 2 = n // 2 |
4 |
2, 3 |
appeqd |
_G -> _B1 @ (n // 2) = _B2 @ (n // 2) |
5 |
|
hyp _Ah |
_G -> _A1 == _A2 |
6 |
5, 3 |
appeqd |
_G -> _A1 @ (n // 2) = _A2 @ (n // 2) |
7 |
1, 4, 6 |
ifeqd |
_G -> if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) = if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2)) |
8 |
7 |
lameqd |
_G -> \ n, if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) == \ n, if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2)) |
9 |
8 |
conv case |
_G -> case _A1 _B1 == case _A2 _B2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)