theorem caseeqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> case _A1 _B1 == case _A2 _B2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | biidd | _G -> (odd n <-> odd n) | 
        
          | 2 |  | hyp _Bh | _G -> _B1 == _B2 | 
        
          | 3 |  | eqidd | _G -> n // 2 = n // 2 | 
        
          | 4 | 2, 3 | appeqd | _G -> _B1 @ (n // 2) = _B2 @ (n // 2) | 
        
          | 5 |  | hyp _Ah | _G -> _A1 == _A2 | 
        
          | 6 | 5, 3 | appeqd | _G -> _A1 @ (n // 2) = _A2 @ (n // 2) | 
        
          | 7 | 1, 4, 6 | ifeqd | _G -> if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) = if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2)) | 
        
          | 8 | 7 | lameqd | _G -> \ n, if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) == \ n, if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2)) | 
        
          | 9 | 8 | conv case | _G -> case _A1 _B1 == case _A2 _B2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)