Theorem caseeqd | index | src |

theorem caseeqd (_G: wff) (_A1 _A2 _B1 _B2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> _B1 == _B2 $ >
  $ _G -> case _A1 _B1 == case _A2 _B2 $;
StepHypRefExpression
1 biidd
_G -> (odd n <-> odd n)
2 hyp _Bh
_G -> _B1 == _B2
3 eqidd
_G -> n // 2 = n // 2
4 2, 3 appeqd
_G -> _B1 @ (n // 2) = _B2 @ (n // 2)
5 hyp _Ah
_G -> _A1 == _A2
6 5, 3 appeqd
_G -> _A1 @ (n // 2) = _A2 @ (n // 2)
7 1, 4, 6 ifeqd
_G -> if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) = if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2))
8 7 lameqd
_G -> \ n, if (odd n) (_B1 @ (n // 2)) (_A1 @ (n // 2)) == \ n, if (odd n) (_B2 @ (n // 2)) (_A2 @ (n // 2))
9 8 conv case
_G -> case _A1 _B1 == case _A2 _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)