theorem applamed2 (F: set) (G: wff) (b c: nat) {x: nat} (a: nat x):
$ G /\ x = b -> a = c $ >
$ G -> F == \ x, a -> F @ b = c $;
Step | Hyp | Ref | Expression |
1 |
|
hyp e |
G /\ x = b -> a = c |
2 |
1 |
eqeq2d |
G /\ x = b -> (F @ b = a <-> F @ b = c) |
3 |
2 |
bi1d |
G /\ x = b -> F @ b = a -> F @ b = c |
4 |
3 |
applamed1 |
G -> F == \ x, a -> F @ b = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)