theorem applamed1 (F: set) (G P: wff) (b: nat) {x: nat} (a: nat x):
$ G /\ x = b -> F @ b = a -> P $ >
$ G -> F == \ x, a -> P $;
| Step | Hyp | Ref | Expression |
| 1 |
|
ax_6 |
E. x x = b |
| 2 |
|
nfv |
F/ x G |
| 3 |
|
nfsv |
FS/ x F |
| 4 |
|
nflam1 |
FS/ x \ x, a |
| 5 |
3, 4 |
nfeqs |
F/ x F == \ x, a |
| 6 |
|
nfv |
F/ x P |
| 7 |
5, 6 |
nfim |
F/ x F == \ x, a -> P |
| 8 |
|
appeq1 |
F == \ x, a -> F @ b = (\ x, a) @ b |
| 9 |
8 |
eqeq1d |
F == \ x, a -> (F @ b = a <-> (\ x, a) @ b = a) |
| 10 |
|
applam |
(\ x, a) @ x = a |
| 11 |
|
anr |
G /\ x = b -> x = b |
| 12 |
11 |
appeq2d |
G /\ x = b -> (\ x, a) @ x = (\ x, a) @ b |
| 13 |
12 |
eqcomd |
G /\ x = b -> (\ x, a) @ b = (\ x, a) @ x |
| 14 |
10, 13 |
syl6eq |
G /\ x = b -> (\ x, a) @ b = a |
| 15 |
9, 14 |
syl5ibrcom |
G /\ x = b -> F == \ x, a -> F @ b = a |
| 16 |
|
hyp e |
G /\ x = b -> F @ b = a -> P |
| 17 |
15, 16 |
syld |
G /\ x = b -> F == \ x, a -> P |
| 18 |
17 |
exp |
G -> x = b -> F == \ x, a -> P |
| 19 |
2, 7, 18 |
eexdh |
G -> E. x x = b -> F == \ x, a -> P |
| 20 |
1, 19 |
mpi |
G -> F == \ x, a -> P |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)