theorem applamed1 (F: set) (G P: wff) (b: nat) {x: nat} (a: nat x): $ G /\ x = b -> F @ b = a -> P $ > $ G -> F == \ x, a -> P $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax_6 | E. x x = b |
|
2 | nfv | F/ x G |
|
3 | nfsv | FS/ x F |
|
4 | nflam1 | FS/ x \ x, a |
|
5 | 3, 4 | nfeqs | F/ x F == \ x, a |
6 | nfv | F/ x P |
|
7 | 5, 6 | nfim | F/ x F == \ x, a -> P |
8 | appeq1 | F == \ x, a -> F @ b = (\ x, a) @ b |
|
9 | 8 | eqeq1d | F == \ x, a -> (F @ b = a <-> (\ x, a) @ b = a) |
10 | applam | (\ x, a) @ x = a |
|
11 | anr | G /\ x = b -> x = b |
|
12 | 11 | appeq2d | G /\ x = b -> (\ x, a) @ x = (\ x, a) @ b |
13 | 12 | eqcomd | G /\ x = b -> (\ x, a) @ b = (\ x, a) @ x |
14 | 10, 13 | syl6eq | G /\ x = b -> (\ x, a) @ b = a |
15 | 9, 14 | syl5ibrcom | G /\ x = b -> F == \ x, a -> F @ b = a |
16 | hyp e | G /\ x = b -> F @ b = a -> P |
|
17 | 15, 16 | syld | G /\ x = b -> F == \ x, a -> P |
18 | 17 | exp | G -> x = b -> F == \ x, a -> P |
19 | 2, 7, 18 | eexdh | G -> E. x x = b -> F == \ x, a -> P |
20 | 1, 19 | mpi | G -> F == \ x, a -> P |