theorem applamed (G: wff) (b c: nat) {x: nat} (a: nat x):
$ G /\ x = b -> a = c $ >
$ G -> (\ x, a) @ b = c $;
Step | Hyp | Ref | Expression |
1 |
|
applams |
(\ x, a) @ b = N[b / x] a |
2 |
|
hyp e |
G /\ x = b -> a = c |
3 |
2 |
sbned |
G -> N[b / x] a = c |
4 |
1, 3 |
syl5eq |
G -> (\ x, a) @ b = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)