Theorem applame | index | src |

theorem applame (b c: nat) {x: nat} (a: nat x):
  $ x = b -> a = c $ >
  $ (\ x, a) @ b = c $;
StepHypRefExpression
1 eqtr
(\ x, a) @ b = N[b / x] a -> N[b / x] a = c -> (\ x, a) @ b = c
2 applams
(\ x, a) @ b = N[b / x] a
3 1, 2 ax_mp
N[b / x] a = c -> (\ x, a) @ b = c
4 hyp e
x = b -> a = c
5 4 sbne
N[b / x] a = c
6 3, 5 ax_mp
(\ x, a) @ b = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)