Theorem eqrd2 | index | src |

theorem eqrd2 (A B: set) (G: wff) {x y: nat}:
  $ G -> (x, y e. A <-> x, y e. B) $ >
  $ G -> A == B $;
StepHypRefExpression
1 axext2
A == B <-> A. x A. y (x, y e. A <-> x, y e. B)
2 hyp h
G -> (x, y e. A <-> x, y e. B)
3 2 iald
G -> A. y (x, y e. A <-> x, y e. B)
4 3 iald
G -> A. x A. y (x, y e. A <-> x, y e. B)
5 1, 4 sylibr
G -> A == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)