Step | Hyp | Ref | Expression |
1 |
|
eor |
(a = b0 (zabs a) -> a |Z b -> E. c c *Z a = b) ->
(a = -uZ b0 (zabs a) -> a |Z b -> E. c c *Z a = b) ->
a = b0 (zabs a) \/ a = -uZ b0 (zabs a) ->
a |Z b ->
E. c c *Z a = b |
2 |
|
zb0orb0 |
b = b0 (zabs b) \/ b = -uZ b0 (zabs b) |
3 |
|
zdvdb0 |
b0 (zabs a) |Z b0 (zabs b) <-> zabs a || zabs b |
4 |
|
zmuleq1 |
c = b0 (zabs b // zabs a) -> c *Z b0 (zabs a) = b0 (zabs b // zabs a) *Z b0 (zabs a) |
5 |
4 |
eqeq1d |
c = b0 (zabs b // zabs a) -> (c *Z b0 (zabs a) = b0 (zabs b) <-> b0 (zabs b // zabs a) *Z b0 (zabs a) = b0 (zabs b)) |
6 |
5 |
iexe |
b0 (zabs b // zabs a) *Z b0 (zabs a) = b0 (zabs b) -> E. c c *Z b0 (zabs a) = b0 (zabs b) |
7 |
|
zmulb0 |
b0 (zabs b // zabs a) *Z b0 (zabs a) = b0 (zabs b // zabs a * zabs a) |
8 |
|
divmul |
zabs a || zabs b -> zabs b // zabs a * zabs a = zabs b |
9 |
8 |
b0eqd |
zabs a || zabs b -> b0 (zabs b // zabs a * zabs a) = b0 (zabs b) |
10 |
7, 9 |
syl5eq |
zabs a || zabs b -> b0 (zabs b // zabs a) *Z b0 (zabs a) = b0 (zabs b) |
11 |
6, 10 |
syl |
zabs a || zabs b -> E. c c *Z b0 (zabs a) = b0 (zabs b) |
12 |
3, 11 |
sylbi |
b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z b0 (zabs a) = b0 (zabs b) |
13 |
|
anl |
a = b0 (zabs a) /\ b = b0 (zabs b) -> a = b0 (zabs a) |
14 |
|
anr |
a = b0 (zabs a) /\ b = b0 (zabs b) -> b = b0 (zabs b) |
15 |
13, 14 |
zdvdeqd |
a = b0 (zabs a) /\ b = b0 (zabs b) -> (a |Z b <-> b0 (zabs a) |Z b0 (zabs b)) |
16 |
13 |
zmuleq2d |
a = b0 (zabs a) /\ b = b0 (zabs b) -> c *Z a = c *Z b0 (zabs a) |
17 |
16, 14 |
eqeqd |
a = b0 (zabs a) /\ b = b0 (zabs b) -> (c *Z a = b <-> c *Z b0 (zabs a) = b0 (zabs b)) |
18 |
17 |
exeqd |
a = b0 (zabs a) /\ b = b0 (zabs b) -> (E. c c *Z a = b <-> E. c c *Z b0 (zabs a) = b0 (zabs b)) |
19 |
15, 18 |
imeqd |
a = b0 (zabs a) /\ b = b0 (zabs b) -> (a |Z b -> E. c c *Z a = b <-> b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z b0 (zabs a) = b0 (zabs b)) |
20 |
12, 19 |
mpbiri |
a = b0 (zabs a) /\ b = b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
21 |
|
zdvdneg2 |
b0 (zabs a) |Z -uZ b0 (zabs b) <-> b0 (zabs a) |Z b0 (zabs b) |
22 |
|
zmuleq1 |
c = -uZ b0 (zabs b // zabs a) -> c *Z b0 (zabs a) = -uZ b0 (zabs b // zabs a) *Z b0 (zabs a) |
23 |
22 |
eqeq1d |
c = -uZ b0 (zabs b // zabs a) -> (c *Z b0 (zabs a) = -uZ b0 (zabs b) <-> -uZ b0 (zabs b // zabs a) *Z b0 (zabs a) = -uZ b0 (zabs b)) |
24 |
23 |
iexe |
-uZ b0 (zabs b // zabs a) *Z b0 (zabs a) = -uZ b0 (zabs b) -> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b) |
25 |
|
zmulneg1 |
-uZ b0 (zabs b // zabs a) *Z b0 (zabs a) = -uZ (b0 (zabs b // zabs a) *Z b0 (zabs a)) |
26 |
10 |
znegeqd |
zabs a || zabs b -> -uZ (b0 (zabs b // zabs a) *Z b0 (zabs a)) = -uZ b0 (zabs b) |
27 |
25, 26 |
syl5eq |
zabs a || zabs b -> -uZ b0 (zabs b // zabs a) *Z b0 (zabs a) = -uZ b0 (zabs b) |
28 |
24, 27 |
syl |
zabs a || zabs b -> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b) |
29 |
3, 28 |
sylbi |
b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b) |
30 |
21, 29 |
sylbi |
b0 (zabs a) |Z -uZ b0 (zabs b) -> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b) |
31 |
|
anl |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> a = b0 (zabs a) |
32 |
|
anr |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> b = -uZ b0 (zabs b) |
33 |
31, 32 |
zdvdeqd |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (a |Z b <-> b0 (zabs a) |Z -uZ b0 (zabs b)) |
34 |
31 |
zmuleq2d |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> c *Z a = c *Z b0 (zabs a) |
35 |
34, 32 |
eqeqd |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (c *Z a = b <-> c *Z b0 (zabs a) = -uZ b0 (zabs b)) |
36 |
35 |
exeqd |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (E. c c *Z a = b <-> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b)) |
37 |
33, 36 |
imeqd |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (a |Z b -> E. c c *Z a = b <-> b0 (zabs a) |Z -uZ b0 (zabs b) -> E. c c *Z b0 (zabs a) = -uZ b0 (zabs b)) |
38 |
30, 37 |
mpbiri |
a = b0 (zabs a) /\ b = -uZ b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
39 |
20, 38 |
eorda |
a = b0 (zabs a) -> b = b0 (zabs b) \/ b = -uZ b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
40 |
2, 39 |
mpi |
a = b0 (zabs a) -> a |Z b -> E. c c *Z a = b |
41 |
1, 40 |
ax_mp |
(a = -uZ b0 (zabs a) -> a |Z b -> E. c c *Z a = b) -> a = b0 (zabs a) \/ a = -uZ b0 (zabs a) -> a |Z b -> E. c c *Z a = b |
42 |
|
zdvdneg1 |
-uZ b0 (zabs a) |Z b0 (zabs b) <-> b0 (zabs a) |Z b0 (zabs b) |
43 |
|
zmuleq1 |
c = -uZ b0 (zabs b // zabs a) -> c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) |
44 |
43 |
eqeq1d |
c = -uZ b0 (zabs b // zabs a) -> (c *Z -uZ b0 (zabs a) = b0 (zabs b) <-> -uZ b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = b0 (zabs b)) |
45 |
44 |
iexe |
-uZ b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b) |
46 |
|
zmul2neg |
-uZ b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = b0 (zabs b // zabs a) *Z b0 (zabs a) |
47 |
46, 10 |
syl5eq |
zabs a || zabs b -> -uZ b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = b0 (zabs b) |
48 |
45, 47 |
syl |
zabs a || zabs b -> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b) |
49 |
3, 48 |
sylbi |
b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b) |
50 |
42, 49 |
sylbi |
-uZ b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b) |
51 |
|
anl |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> a = -uZ b0 (zabs a) |
52 |
|
anr |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> b = b0 (zabs b) |
53 |
51, 52 |
zdvdeqd |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> (a |Z b <-> -uZ b0 (zabs a) |Z b0 (zabs b)) |
54 |
51 |
zmuleq2d |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> c *Z a = c *Z -uZ b0 (zabs a) |
55 |
54, 52 |
eqeqd |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> (c *Z a = b <-> c *Z -uZ b0 (zabs a) = b0 (zabs b)) |
56 |
55 |
exeqd |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> (E. c c *Z a = b <-> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b)) |
57 |
53, 56 |
imeqd |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> (a |Z b -> E. c c *Z a = b <-> -uZ b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = b0 (zabs b)) |
58 |
50, 57 |
mpbiri |
a = -uZ b0 (zabs a) /\ b = b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
59 |
|
zdvdneg2 |
-uZ b0 (zabs a) |Z -uZ b0 (zabs b) <-> -uZ b0 (zabs a) |Z b0 (zabs b) |
60 |
|
zmuleq1 |
c = b0 (zabs b // zabs a) -> c *Z -uZ b0 (zabs a) = b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) |
61 |
60 |
eqeq1d |
c = b0 (zabs b // zabs a) -> (c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) <-> b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = -uZ b0 (zabs b)) |
62 |
61 |
iexe |
b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
63 |
|
zmulneg2 |
b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = -uZ (b0 (zabs b // zabs a) *Z b0 (zabs a)) |
64 |
63, 26 |
syl5eq |
zabs a || zabs b -> b0 (zabs b // zabs a) *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
65 |
62, 64 |
syl |
zabs a || zabs b -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
66 |
3, 65 |
sylbi |
b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
67 |
42, 66 |
sylbi |
-uZ b0 (zabs a) |Z b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
68 |
59, 67 |
sylbi |
-uZ b0 (zabs a) |Z -uZ b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b) |
69 |
|
anl |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> a = -uZ b0 (zabs a) |
70 |
|
anr |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> b = -uZ b0 (zabs b) |
71 |
69, 70 |
zdvdeqd |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (a |Z b <-> -uZ b0 (zabs a) |Z -uZ b0 (zabs b)) |
72 |
69 |
zmuleq2d |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> c *Z a = c *Z -uZ b0 (zabs a) |
73 |
72, 70 |
eqeqd |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (c *Z a = b <-> c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b)) |
74 |
73 |
exeqd |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (E. c c *Z a = b <-> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b)) |
75 |
71, 74 |
imeqd |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> (a |Z b -> E. c c *Z a = b <-> -uZ b0 (zabs a) |Z -uZ b0 (zabs b) -> E. c c *Z -uZ b0 (zabs a) = -uZ b0 (zabs b)) |
76 |
68, 75 |
mpbiri |
a = -uZ b0 (zabs a) /\ b = -uZ b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
77 |
58, 76 |
eorda |
a = -uZ b0 (zabs a) -> b = b0 (zabs b) \/ b = -uZ b0 (zabs b) -> a |Z b -> E. c c *Z a = b |
78 |
2, 77 |
mpi |
a = -uZ b0 (zabs a) -> a |Z b -> E. c c *Z a = b |
79 |
41, 78 |
ax_mp |
a = b0 (zabs a) \/ a = -uZ b0 (zabs a) -> a |Z b -> E. c c *Z a = b |
80 |
|
zb0orb0 |
a = b0 (zabs a) \/ a = -uZ b0 (zabs a) |
81 |
79, 80 |
ax_mp |
a |Z b -> E. c c *Z a = b |
82 |
|
izdvd |
c *Z a = b -> a |Z b |
83 |
82 |
eex |
E. c c *Z a = b -> a |Z b |
84 |
81, 83 |
ibii |
a |Z b <-> E. c c *Z a = b |