theorem divmul (a b: nat): $ b || a -> a // b * b = a $;
| Step | Hyp | Ref | Expression |
| 1 |
|
diveq1 |
x * b = a -> x * b // b = a // b |
| 2 |
1 |
muleq1d |
x * b = a -> x * b // b * b = a // b * b |
| 3 |
|
mul0 |
x * b // b * 0 = 0 |
| 4 |
|
muleq2 |
b = 0 -> x * b // b * b = x * b // b * 0 |
| 5 |
3, 4 |
syl6eq |
b = 0 -> x * b // b * b = 0 |
| 6 |
|
mul0 |
x * 0 = 0 |
| 7 |
|
muleq2 |
b = 0 -> x * b = x * 0 |
| 8 |
6, 7 |
syl6eq |
b = 0 -> x * b = 0 |
| 9 |
5, 8 |
eqtr4d |
b = 0 -> x * b // b * b = x * b |
| 10 |
|
muldiv1 |
b != 0 -> x * b // b = x |
| 11 |
10 |
conv ne |
~b = 0 -> x * b // b = x |
| 12 |
11 |
muleq1d |
~b = 0 -> x * b // b * b = x * b |
| 13 |
9, 12 |
cases |
x * b // b * b = x * b |
| 14 |
|
id |
x * b = a -> x * b = a |
| 15 |
13, 14 |
syl5eq |
x * b = a -> x * b // b * b = a |
| 16 |
2, 15 |
eqtr3d |
x * b = a -> a // b * b = a |
| 17 |
16 |
eex |
E. x x * b = a -> a // b * b = a |
| 18 |
17 |
conv dvd |
b || a -> a // b * b = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)