Theorem muleq1d | index | src |

theorem muleq1d (_G: wff) (_a1 _a2 b: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _a1 * b = _a2 * b $;
StepHypRefExpression
1 hyp _h
_G -> _a1 = _a2
2 eqidd
_G -> b = b
3 1, 2 muleqd
_G -> _a1 * b = _a2 * b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_peano (muleq)