Theorem idvd2 | index | src |

theorem idvd2 (a b c: nat): $ a * c = b -> a || b $;
StepHypRefExpression
1 eqeq1
a * c = c * a -> (a * c = b <-> c * a = b)
2 mulcom
a * c = c * a
3 1, 2 ax_mp
a * c = b <-> c * a = b
4 idvd
c * a = b -> a || b
5 3, 4 sylbi
a * c = b -> a || b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)